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A B S T R A C T

Accurate classification of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI) play
key roles in computer-assisted intervention for the diagnosis of AD. However, not all features of AD data will lead
to a good classification result, because there are always some unrelated and redundant features. To solve this
problem, an adaptive LASSO logistic regression model based on particle swarm optimization(PSO-ALLR)is pro-
posed. This algorithm consists of two stages. In the first stage, the particle swarm optimization (PSO) algorithm is
used for global search to remove redundant features and reduces the computational time for the later stage. In the
second stage, the adaptive LASSO serves as a local search to select the most relevant features for AD classi-
fication.We evaluate the performance of the proposed method on 197 subjects from the baseline MRI data of
ADNI database. The proposed method achieves a classification accuracy of 96.27%, 84.81%, and 76.13%, for AD
vs. HC, MCI vs. HC, and cMCI vs. sMCI, respectively.
1. Introduction

Alzheimer's disease (AD) is a neurological brain disease. The typical
symptoms of the disease are cognitive and memory decline, which seri-
ously affects people's daily lives [1]. According to statistics, there are
about 50 million AD patients worldwide, and this number is still growing
rapidly. It is estimated that this number will reach 13.8 million by 2050
[2].The rapid increase in the number of AD patients and other forms of
dementia bring a major challenge to health and social care systems. Until
today, there is still no effective drug to treat the disease. Early diagnosis
and early intervention are the only methods that can be relied on.
Therefore, the early diagnosis of ad has attracted the attention of scholars
from all over the world. Mild cognitive impairment (MCI) is an early
stage of AD. It is estimated that 40%–60% of individuals over the age of
58 with MCI have potential AD pathology. Approximately 15% of MCI
patients convert to AD each year [3]. Accurate diagnosis of MCI and
prediction of the risk process of its conversion to AD are essential. The
early diagnosis and timely therapy of AD might be effective to delay the
conversion of MCI to AD. The diagnosis of this stage is very difficult,
orm 6 March 2021; Accepted 10
because the clinical symptoms of MCI are not obvious.
In recent studies, machine learning methods based on MRI bio-

markers are used for the diagnosis of AD [4–6]. Among numerous ma-
chine learning algorithms, logistic regression(LR) is a widely used
discriminative method [7]. LR has a direct probabilistic interpretation. In
addition to the class label information it can obtain direct classification
probabilities [8]. However, the small number of samples and more fea-
tures in AD data make it difficult for logistic regression to classify Alz-
heimer's disease. What's more, many irrelevant features have an impact
on the accuracy of classification.

For the above problems, the sparse logistic regression models with
different sparse penalty terms is proposed such as LASSO [9], SCAD [10]
and Elastic net [11]. Regularization methods are an important embedded
technique for feature selection and model learning at the same time [12,
13]. Most widely used regular terms include the least absolute shrinkage
and selection operator (LASSO). Koh et al. [14] introduced the L1 regu-
larized logistic regression as a special case to solve large-scale problems.
The LASSO can shrink the regression coefficients to zero, thereby
selecting some important features simultaneously [15–17]. However,
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LASSO may make selected features inconsistent in some cases and the
estimated parameters may have some deviations. What's more, LASSO
can't obtain the sufficiently sparse results. In this paper, we propose a
novel method for AD early diagnosis. The method consists of two stages.
In the first stage, PSO can remove redundant and irrelevant features and
reduce the computational time for the later stage. PSO is a powerful
global search method. It has lower cost and faster convergence speed
[18]. In the second stage, adaptive LASSO is mainly used to optimize
logistic regression, where adaptive weights can penalize different feature
coefficients to make feature selection consistent in the L1 penalty.
Adaptive LASSO as a local search method can further determine which
features are important among the remaining features and evaluate the
model. In this stage, the highest discriminative features are selected.
What's more, in our previous work, we mainly use L1/2 regularization to
sparsely optimize the logistic regression model. L1/2 regularization can
make the logistic regression produce sparse solutions, thereby selecting
important features for classification [19]. However, although sparse lo-
gistic regression with L1/2 regularization has achieved better classifica-
tion results on AD, this method cannot address the highly correlated
features. Compared with L1/2 regularization, the newly proposed
two-stage sparse logistic regression can select the optimal feature subset
with high classification accuracy by combining PSO and adaptive LASSO
regularization. Such method would not only save computational costs,
but will also enable doctors to identify a small subset of features related
to AD and target only a small number of features in designing less
expensive experiments. Therefore, the main contributions of this article
include: (1) The combination of PSO and adaptive LASSO logistic
regression is proposed; (2) PSO is used for global feature search and
Adaptive LASSO is trained for local feature filtering to choose the most
relevant features of AD; (3) The proposed new algorithm is used in the
early diagnosis of AD, and experiments and analysis are carried out. (4)
The biomarkers closely related to AD are identified, which can assist in
AD classification.

The rest of this work is arranged as follows. In the second part, we
introduce the details of the experimental data. The methodology used in
this article is described in the third part. The fourth part introduces the
experimental results and discusses them further. The last part is the
conclusion of this article.

1.1. ADNI database

The dataset used in our article is derived from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database(http://www.loni.ucla
.edu/ADNI). ADNI was found in 2003 by the National Institute of
Biomedical Imaging and Bioengineering. It is a non-profit organization
[20]. ADNI provides unlimited data access and encourages researchers to
develop potential methods for the analysis of AD. Magnetic resonance
imaging(MRI) is a widely used imaging mode in the diagnosis and pre-
diction of AD [21–23]. It is able to make better comparisons among
different soft tissues. Therefore, we use MRI images for analysis. We
selected MRI images of 197 subjects in the ADNI database, including 51
AD, 50 healthy controls (HC) and 96 MCI (including 51 converted MCI
(cMCI) and 45 stable MCI (sMCI)). Table 1 presents detailed information
about these subjects.
Table 1
Statistical information of subjects (mean standard � deviation).

Diagnosis Subjects Age Gender(F/M) MMSE CDR

AD 51 75.8 � 7.5 23/28 23.6 � 2.2 0.7 � 0.3
HC 50 77.8 � 6.8 27/23 28.8 � 1.4 0.0 � 0.0
cMCI 51 72.5 � 6.5 26/25 26.7 � 1.3 0.5 � 0.0
sMCI 45 71.9 � 7.6 20/25 27.3 � 1.6 0.5 � 0.0

Note:CDR: clinical dementia rating scale, 0 ¼ no dementia, 0.5 ¼ suspected
dementia, 1 ¼ mild dementia, MMSE: Concise mental state examination scale.
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2. Methods

2.1. Image preprocessing and feature extraction

The MRI image downloaded from the ADNI database requires a series
of image preprocessing and extracts the gray matter volume of 90 regions
of interest as effective features. The specific image preprocessing and
feature extraction process are shown in Fig. 1.

For each subject, T1-weighted MRI was first pre-processed by an
anterior commissure-posterior commissure (AC-PC) correction using
MIPAV software. Then, N3 algorithm was used to correct the intensity
inhomogeneity followed by skull stripping and cerebellum removing. In
addition, each MRI was segmented into gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF) by using VBM8 toolbox. Next, by
warping the Automated Anatomical Labeling (AAL) template, for each
subject, we parcellated the brain space into 90 regions of interest (ROIs).
Lastly, we calculated the gray matter volume of 90 regions of interest as
features.

2.2. Logistic regression model

As a special nonlinear model, logistic regression is mainly used to
solve classification problems [24]. In our article, we implement LR for
the binary classification problem. Supposing that xi ¼
ðxi1; xi2; xi3; :::; xinÞT is i-th sample vector of the matrix X. Define a clas-
sifier f ¼ ex=1þ exand the expression of the logistic regression model is:

πi ¼ pðyijxiÞ ¼ f
�
xTi θ
� ¼ exp

�
xTi θ
�

1þ expðxTi θÞ
(1)

Where, θ ¼ ðθ0; θ1; θ2; :::; θnÞ represents coefficient matrix of ðn þ 1Þ� 1.
yi is a return variable with a value of 1 or 0. yi ¼ 1represents the disease
class and yi ¼ 0 represents the non-disease class. πi 2 ð0;1Þ represents
the return probability of the classifier label yi. If πi � 0:5, the sample is
divided into disease categories. If πi � 0:5, the sample is divided into
healthy categories. The log-likelihood can be expressed as:

log
Yn
i¼1

pðyijxiÞ¼
Xn
i¼1

ðyi logðπiÞþ ð1� yiÞlogð1� πiÞÞ (2)

The loss function based on Eq. (2) is defined as:
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The estimation of the vector θ is obtained by minimizing Eq.(3):
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2.3. Adaptive LASSO logistic regression model

When the dimension of the experimental data is higher than the
number of training samples, logistic regression is prone to be overfitting.
To obtain a robust classifier, the penalization techniques for logistic
regression are proposed as:
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Where, λ > 0 is a tuning parameter. Larger value of λ means more zero
rows in the weight matrix. A few important features are retained. PðθjÞ is
the penalty term. Zou et al. [25] proposed the adaptive LASSO. It has
oracle properties. The sparse logistic regression with adaptive LASSO is
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Fig. 1. Image preprocessing and feature extraction process.
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defined as:
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Where, w ¼ ðw1;w2; :::;wnÞT is a n� 1weight vector. The adaptive weight
gives different weights to different coefficients in L1 penalty. It depends

on root n-consistent initial values of θ*and wj ¼ ð
���θ*j ���Þ�γ

where γ > 0. The

initial weight of adaptive LASSO is obtained by maximum likelihood
estimation. The estimation of the vector θ is shown as:
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2.4. The gradient descent algorithm for the adaptive LASSO logistic
regression

Since logistic regression has no analytical solution, it can only be
solved by iterativemethods. In our article, the gradient descent method is
used to solve the sparse logistic regression. Algorithm 1 shows the so-
lution process.

Algorithm 1. the gradient descent for the adaptive LASSO logistic
regression
3

2.5. Particle swarm optimization feature selection stage

Particle swarm optimization (PSO) is global search algorithm based
on swarm intelligence. In PSO feature selection stage, each particle
represents a subset of features. Particle motion is determined by position
vector and velocity vector. In n-dimensional space, the position of the i-th
particle is Xi ¼ ðx1i ;x2i ; ::::;xni Þ. The speed is Vi ¼ ðv1i ;v2i ; ::::;vni Þ. Where, n
represents the number of features. The current best position of a particle
is PBi ¼ ½pb1i ; pb2i ; ::::; pbni � , and the best global position of the neighbor is
GBi ¼ ½gb1i ; gb2i ; ::::;gbni �. The particle's velocity is updated as follows:

vji ¼wvji þ k1r1
�
pbji � xji

�þ k2r2
�
gbji � xji

�
(8)

Where w is the inertia weight ranging between 0 and 1, k1and k2 are
learning factors, r1 and r2 are random numbers ranging between 0 and 1.

In feature selection, a particle represents a potential solution (i.e.,
feature subset) in an n-dimensional space. The particles are represented
using a binary bit string with length n, where n is the total number of
features. The position of the particle updates on the basis of the following
formulae:

xji ¼
(
1; if sigmoid

�
vji
�
> randðÞ

0; otherwise
(9)

Where, sigmoidðvjiÞ is 1=1þ e�vji . Setting that the position threshold randðÞ
is a random number and uniformly distributed in [0,1].
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2.6. The proposed method

Amongmany features that lead to AD, only a small number of features
play a major role. Therefore, selecting the most discriminative features in
the classification of AD can achieve the better prediction results. In this
paper, PSO along with adaptive LASSO logistic regression is used to
improve the classification prediction of AD. The proposed method can
select the optimal feature subset for better classification. The objective
function is defined by:

Fitness¼Accuracy of the LR with adaptive LASSO model (10)

In this paper, the fitness of the objective function is specified as the
classification accuracy of the logistic regression with the adaptive LASSO.
A pseudo code for the proposed method is described in Algorithm 2.

Algorithm 2. Pseudo code of our proposed method for AD classifica-
tion
Table 2
Different methods in AD/MCI classification comparison.

Subjects Method ACC (%) SEN (%) SPE (%) Selected
features

AD vs. HC PSO-LR 80.82 78.57 83.71 60
ALLR 91.50 80.50 92.20 35
PSO-
ALLR

96.27 93.33 95.78 17

MCI vs. HC PSO-LR 77.47 78.57 72.16 42
ALLR 81.93 88.71 77.00 29
PSO-
ALLR

84.81 90.00 85.71 23

cMCI vs.
sMCI

PSO-LR 66.10 66.67 64.70 41

ALLR 73.00 69.61 75.25 30
PSO- 76.13 78.00 86.50 16
3. Results and discussion

3.1. Experiment setting

In this article, we implement three classification tasks: AD subjects
versus HC subjects (AD vs. HC), MCI subjects versus HC subjects (MCI vs.
HC) and cMCI versus sMCI (cMCI vs. sMCI). To achieve a fair comparison,
two procedures were set up. First, we take 70% of data through the
training process and 30% through the testing of each clinical group (i.e.,
the AD/HC, MCI/HC and cMCI/sMCI groups).

Second, we perform ten-fold cross-validation in the training sets to
select the optimal parameter λ. To avoid bias due to the random distri-
bution of samples, we repeated the experiment 50 times. We report the
average performances in terms of accuracy (ACC), sensitivity (SEN),
specificity (SPE), receiver operating characteristic curve (ROC) and area
under the receiver operating characteristic (AUC) on the test set. The
specific formula is defined as:
4

ACC¼ TPþ TN
TPþ FN þ TN þ FP

(11)
SEN¼ TP
TPþ FN

(12)

SPE¼ TN
TN þ FP

(13)

ROC curve is a powerful tool for the study of the performance of the
classifier. On the ROC curve, the horizontal axis is false positive rate
(FPR) and the vertical axis is true positive rate (TPR). The formula is
given by:

TPR¼ TP
TPþ FN

(14)
FPR¼ FP
TN þ FP

(15)

The true positive (TP) stands for the number of patients who are
ALLR



Fig. 2. AUC of AD/MCI classification by different methods.

Fig. 3. ROC curves of AD/MCI classification by different method.
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correctly classified into disease categories. The true negative (TN) is the
number of healthy people with the correct classification of the health
class. False positive (FP) is the number of healthy people who are divided
into sick patients. False negatives (FN) is the number of sick patients
classified as healthy people.
Fig. 4. Classification accuracy under different parameter λ
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3.2. Experiment results

This part presents a summary and the discussion of the results. The
proposed method (PSO-ALLR) is applied to three groups of classification
tasks and is compared with PSO-LR (Logistic regression based on PSO)
and ALLR (adaptive LASSO logistic regression).

Table 2 shows the corresponding experimental results. It can be seen
from Table 2 that, our method selected 17 features in AD vs. HC, 23
features in MCI vs. HC, and 16 features in cMCI vs. sMCI. The number of
features selected by our proposed method is the smallest compared with
another two comparative approaches. PSO can remove redundant and
irrelevant features. The adaptive LASSO can further determine which
features are important among the remaining features. What's more, in
terms of classification performance, the classification accuracy achieved
by our method is 96.27% in AD vs. HC, which is higher than that of
another two logistic regression models. In MCI vs. HC, the classification
accuracy is 84.81%. We also carried out experiments on classifying cMCI
from sMCI. As a prodromal stage of AD, MCI has a high conversation risk,
so it is necessary to identify cMCI from sMCI. Early diagnosis and inter-
vention can delay the conversion of MCI to AD. As can be seen from
Table 2, our method obtained the classification accuracy of 76.13%,
which is 5% higher than maximum accuracy achieved by the comparison
method. This indicates that PSO removes redundant features and retains
those features representing a high individual correlation with AD. The
combination of PSO and adaptive LASSO logistic regression can be better
used for the diagnosis of AD.

For the metrics of sensitivity and specificity, the higher the sensi-
tivity, the lower the chance of mis-diagnosing AD/MCI patients; also the
higher the specificity, the lower the chance of mis-diagnosing HC to AD/
MCI. It can be seen from Table 2 that, our proposed method showed



Fig. 5. The most discriminative brain regions in MCI vs. HC.

Table 3
The top 10 discriminative brain regions identified by our proposed method in
MCI vs. HC

Brain regions Selected times

Angular_R 50
Amygdala_L 50
Cuneus_L 48
Temporal_Mid_L 48
Amygdala_R 45
Olfactory_L 42
ParaHippocampal_R 42
Tmporal_Inf_R 38
Hippocampus_L 33
Precentral_L 31
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higher sensitivity and specificity in three classification tasks. Our method
is less likely to mis-diagnose subjects with AD/MCI, compared with
comparison method.

Regarding AUC and ROC curve, as can be seen from Fig. 2, our pro-
posed showed the best AUC of 0.96 in AD vs. HC, 0.87 in MCI vs. HC, and
0.76 in cMCI vs. sMCI. Compared with ALLR, the proposed method
increased AUC by 0.03 (AD vs. HC), 0.04 (MCI vs. HC), and 0.04 (cMCI
Table 4
Classification accuracy of different classification methods on AD, MCI, HC.

Method Subjects (AD/HC) AD vs. HC(%) ACC | SEN |
SPE

Subjects (MCI/HC)

Min et al., 2014 97/128 91.64 88.56 93.85 –

Li et al., 2015 51/52 91.40 – – 99/52
Yu et al., 2016 50/52 90.60 – – 97/52
Ben et al., 2017 45/52 88.16 77.58 93.26 58/52
Zeng et al., 2018 92/92 81.25 – –

Xiao et al., 2020 51/50 93.33 92.25 94.75 96/50
PSO-ALLR 51/50 96.27 93.33 95.78 96/50
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vs. sMCI). Fig. 3 shows the corresponding ROC curve in three classifi-
cation tasks. Through ROC curve, we can intuitively see that the pro-
posed method has excellent diagnostic power.
3.3. Evaluation with the parameter

In the adaptive LASSO logistic regression, the parameter λ is a regu-
larization control parameter, which controls the sparsity of the model. By
selecting optimal parameter λ, the classifier can select the most
discriminating brain areas and has better performance. Fig. 4 gives the
classification accuracies of our proposed method under different values
of the parameterλin the three classification tasks. The horizontal axis
represents different values of λ. The vertical axis represents classification
accuracies obtained under different parameter values. In this paper, the
parameter λ is set from f10�3;:::;10g. As we can see from Fig. 4, a proper
selection of parameter λwill improve the performance of the proposed. In
AD vs. HC, when λ 2 f0:001; 0:01g, our method achieves good classifi-
cation performance. In MCI vs. HC, when λ 2 f0:01;0:1g, our method
obtains the high classification accuracy. In cMCI vs. sMCI, our method
can better identify cMCI from sMCI when λ 2 f0:001;0:1g. Therefore, we
look for the optimal parameter values in the above three ranges. Our
method achieves the best classification performance when λ ¼ 0:005(AD
MCI vs. HC(%) ACC | SEN |
SPE

Subjects (cMCI/sMCI) cMCI vs. sMCI(%) ACC |
SEN | SPE

– – – 117/117 72.41 72.12 72.58
77.40 – – 43/56 57.40 – –

75.10 – – – – – –

76.92 66.71 81.15 – – –

– – 95/82 69.23 – –

82.75 86.67 78.57 51/45 72.87 81.25 65.45
84.81 90.00 85.71 51/45 76.13 78.00 86.50
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vs. HC), λ ¼ 0:1 (MCI vs. HC) and λ ¼ 0:02 (cMCI vs. sMCI).

3.4. The most discriminative brain regions

Apart from introducing the classification performance of our method,
we also report the AD-related brain regions selected by our proposed
method in MCI vs. HC. Fig. 5 plots the some frequently selected brain
regions in MCI vs. HC. Table 3 summarizes the discriminative brain re-
gions and the corresponding number of selections. They are known to be
related to AD [26–32]. For example, hippocampus is related to human
memory and learning. It is the first brain region to be damaged in relation
to AD disease. Amygdala controls human emotions and cognition. Par-
aHippocampal has an important relationship with cognition and
emotion. This shows that our proposed method can help to find brain
regions related to AD so as to better assist the diagnosis of AD.

3.5. Comparison with other methods

To further reflect the advantages of our proposed method, we list
some representative methods in recent years. Table 4 represents the
classification results obtained by other methods, including SVM [33],
DBN [34], Multi-task learning [35], Multiple Kernel Learning [36],
SDPSO-SVM-PCA [37], Sparse logistic regression [18]. Although the size
of the data set and the method of feature extraction may be different, the
data comes from ADNI database. So, it is worth comparing the classifi-
cation performance. Since several studies use multimodal biomarker, we
report their results using only MRI data if available; Otherwise, we report
their results using multimodal data. In Table 4, our proposed method
achieves the highest accuracy, sensitivity and specificity in three classi-
fication tasks. Compared with Min et al.’s results, our method improves
classification accuracy by 4.63% in AD vs. HC. In particular, in the cMCI
vs. sMCI, our method improves by 3.72%. What's more, compared with
our previous method, the proposed method increased ACC by 2.94% (AD
vs. HC), 2.06% (MCI vs. HC), and 3.26% (cMCI vs. sMCI). This further
proves the advantages of our proposed method in AD classification.

4. Conclusions

In our article, we proposed a novel method for the diagnosis of AD
using a PSO algorithm combined with an adaptive LASSO logistic
regression. Our method consists of two stages, which combines PSO and
adaptive LASSO logistic regression. In the first stage, PSO can remove
unimportant features. In the second stage, adaptive LASSO selects the
most discriminative brain regions from the remaining features and ach-
ieves better classification performance. We evaluate our proposed
method based on ADNI dataset. It is worth noting that the accuracy of our
proposed method for AD vs. HC and MCI vs. HC are 96.27%, 84.81%
respectively. In particular, we use the method for the classification of
cMCI and sMCI to obtain the classification accuracy of 76.13%, which is
valuable for the timely diagnosis and treatment of MCI. The experimental
results show that compared with several other classificationmethods, our
method has good competitiveness in AD classification. In the future
work, we will further consider the optimization of the logistic regression
model to improve the classification performance of the model, and better
apply to AD diagnosis problems.
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